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1. Introduction 
 
Designing a process in chemical engineering such as 

separation, extraction, and azeotropic distillation on the 
academic and industrial scale could be a dead-end due to 

the lack of exact solvents and materials. Also, replacing 
a non-toxic material instead of toxic alternative might be 
necessary [1]. Knowledge about the alternatives for the 
solvents and industrial materials always was a necessity 
to keep the process going on and reduce the costs. 
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Finding alternative materials and solvents in a chemistry lab or the 
process of designing would be a time-consuming matter. The activity 
coefficient is one of the most important thermodynamic properties that could 
be used for this purpose. COSMO-SAC modeling is a reliable method to 
determine the activity coefficient of the mixtures and is used to find 
alternatives to the organic materials in the present study. A dataset of 96 
organic molecules’ activity coefficients in the different solvents (water, 
ethanol, methanol, toluene, and benzene) mixtures have been obtained in full 
range composition with COSMO-SAC. The created database has been 
merged with the FreeSolv dataset to extend the diversity of the properties to 
enrich the dataset for machine learning training. Unsupervised machine 
learning methods (clustering) including centroid-based and density-based 
clustering methods have been conducted to introduce the best alternatives 
for the studied 96 organic materials. Proper pre-processing for these methods 
has been utilized to evaluate the optimum parameters of the clustering 
methods including the elbow method for centroid-based clustering and k-
nearest neighbors for the density-based clustering. The centroid-based 
clustering methods recommend a different variety of materials based on the 
cluster numbers and sorting the alternatives based on the nearest properties. 
However, the density-based method works with the optimum distance and 
the number of the k-nearest neighbors that were 0.08 and 7, respectively for 
the created dataset. Its results are exclusive and show that the clustering 
could be used to isolate the clusters based on the chemical families which 
were 5 clusters and 12 out layers. The out layers are important since no 
alternatives have been introduced for them in the trained dataset and should 
be considered as unique materials. The density-based clustering results were 
more promising using COSMO-SAC data for organic materials alternative 
recommender. 
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The thermodynamic properties of materials are 
key for alternating them with other chemicals in 
the process of designing, literally. The activity 
coefficient is one of the most important properties 
that could be used to compare the materials and 
alternating them.  

The COSMO-SAC model is commonly 
used for the activity coefficient calculation of 
mixtures [2]. It works based on the statistical 
thermodynamics that gets σ-profiles from 
quantum mechanics calculations as input. 
Generally, dmol3 was used for geometry 
optimization and minimization of molecule 
energy, and evaluation of σ-profiles [3]. Also, the 
COSMO-SAC model provides good results for the 
activity coefficient with a low deviation from 
experimental results. Indeed, it has a good 
reputation and is considered a reliable method in 
the prediction of the activity coefficient of organic 
materials. Also, it has been shown that the 
COSMO-SAC thermodynamic properties 
depends on the chemical family rather than the 
size of the molecule that makes it powerful tool 
for the purpose of this study [4].  

The activity coefficient could be used to 
compare two materials in process engineering. 
However, comparing more than two materials 
could be impossible and time-consuming for 
engineers or academics. Also, dealing with more 
properties rather than activity coefficient would be 
harder to achieve accurate deduction. Machine 
learning could be used to overcome this problem 
and save time and costs to find an alternative 
chemical for process designing. Generally, 
machine learning is used for supervised, 
unsupervised, and regression problems [5]. 
Finding alternative materials is an unsupervised 
and clustering problem. 

Machine learning has been used in 
chemical reactions as a predictor of the product, or 
determination of the reaction rate [6].  Machine 
learning can use different data for training with a 
large number of features as variables and a label 
for prediction. Also, it could be used for the 
classification as a supervised method with initial 
conditions. On the other hand, clustering is an 
unsupervised machine learning process to put 
different inputs to specific clusters. Different 
methods could be used for clustering that main 
methods are partitioning, density-based, 
distribution model-based, hierarchical, and Fuzzy 
clustering [7,8]. 

An activity coefficient dataset based on 
the COSMO-SAC modeling has been evaluated 
for 96 aqueous mixtures of organic solvents and 

merged with the FreeSolv dataset including the 
free energy of hydration for the same organic 
molecules, [9]. There are experimental, DFT 
calculations, and molecular dynamics data 
including different thermodynamic properties and 
molecular descriptive in the FreeSolv [9]. Also, 
the COSMO-SAC implementation by Bell et al 
has been used to calculate the activity coefficient 
of the mixture of these materials with different 
solvents [10]. A machine learning clustering with 
different algorithms has been conducted to 
provide a solution for alternating chemicals based 
on the dataset’s thermodynamic properties and 
other features. 

 
2. Results and discussion 
 
COSMO-SAC 
The activity coefficient of the organic compounds 
in different solvents has been predicted using the 
COSMO-SAC model, and the corresponding 
predicted data are given in supporting information 
in Tables S1 – S5. The predicted activity 
coefficient data for binary mixtures of thiophene 
in the studied solvents have been illustrated in 
Figure 1 as an example.  

The large amount of data and its diversity 
is clear. Accordingly, no data validation is carried 
out. However, the pioneers and the developers of 
the COSMO-SAC implementation have shown 
that the model is quite reliable [2-4, 10-13]. On the 
other hand, the integrity of the evaluated data with 
the COSMO-SAC is more important rather than 
the accuracy of the data, and no data comparison 
with experimental results has been carried out. 
The COSMO-SAC uses the quantum mechanics 
data as primary data and evaluates chemical 
thermodynamic data [14]. These two types of data 
might be in contradiction due to their different 
microscopic and macroscopic approaches. 
Accordingly, the evaluated data has been used 
without validation in the machine learning 
process. 

 
 2.1 Machine learning clustering 

The first step in machine learning clustering is 
to find the optimal number of clusters. 
Determination of the optimal number of the 
clusters depends on the utilized method.  
Elbow and silhouette score methods are used in 
the centroid-based methods such as K-means [15]. 
Using both of the methods would be more reliable 
[16]. The elbow and silhouette score results for the 
K-means are given in Figure 2 for the evaluated 
dataset.
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Fig. 1. The activity coefficients of the binary mixture’s components including thiophene in different solvents 

(water, ethanol, methanol, benzene, and toluene) versus the mole fraction of thiophene using COSMO-SAC under 0.1 
MPa pressure at 298.15 K. 

 b 

  
 
Fig. 2. a) The elbow inertia values versus the number of clusters, b) the silhouette score versus the number 

of clusters. 
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Table 1. The clustering results from k-means. 

Cluster 
1 

ACETAMIDE, ACETONITRILE, AMMONIA, GLYCEROL, HYDRAZINE, 
METHANOL, N-METHYLACETAMIDE, NITROMETHANE, PHENOL, PIPERAZINE, 
PYRENE 

Cluster 
2 

1-NITROBUTANE, 1-NITROPROPANE, 2-BUTOXYETHANOL, 2-
METHYLPYRIDINE, 2-METHYLTHIOPHENE, 2-NITROPROPANE, 2-
PHENYLETHANOL, 3-METHYLPYRIDINE, 4-METHYLPYRIDINE, 
ACENAPHTHENE, ACETALDEHYDE, ACETONE, ACETONITRILE, ANILINE, 
ANTHRACENE, BENZALDEHYDE, BENZONITRILE, BROMOBENZENE, 
CHLOROBENZENE, CHLOROFORM, CYCLOHEXANOL, CYCLOHEXANONE, 
CYCLOPENTANONE, DIBROMOMETHANE, DICHLOROMETHANE, 
DIIODOMETHANE, ETHANOL, FORMALDEHYDE, IODOBENZENE, M-CRESOL, 
METHANOL, MORPHOLINE, NAPHTHALENE, NITROBENZENE, 
NITROMETHANE, O-CRESOL, P-CRESOL, PHENANTHRENE, PIPERIDINE, 
PYRIDINE, PYRROLE, PYRROLIDINE, QUINOLINE, QUINONE, 
TETRAHYDROFURAN, THIOPHENE 

Cluster 
3 

1-NITROBUTANE, 1-NITROPROPANE, 2-BUTOXYETHANOL, 2-
ETHOXYETHANOL, 2-METHOXYETHANOL, 2-METHYLPYRIDINE, 2-
NITROPROPANE, 2-PHENYLETHANOL, 3-METHYLPYRIDINE, 4-
METHYLPYRIDINE, ACENAPHTHENE, ACETALDEHYDE, ACETONE, 
ACETONITRILE, ANILINE, ANTHRACENE, BENZALDEHYDE, BENZONITRILE, 
CHLOROFORM, CYCLOHEXANOL, CYCLOHEXANONE, CYCLOPENTANONE, 
DIBROMOMETHANE, DIIODOMETHANE, ETHANOL, FORMALDEHYDE, M-
CRESOL, METHANOL, MORPHOLINE, NITROBENZENE, NITROMETHANE, O-
CRESOL, P-CRESOL, PHENANTHRENE, PHENOL, PIPERAZINE, PIPERIDINE, 
PYRENE, PYRIDINE, PYRROLE, PYRROLIDINE, QUINOLINE, QUINONE, 
SULFOLANE, TETRAHYDROFURAN 

Cluster 
4 

1-BROMOBUTANE, 1-BROMOHEPTANE, 1-BROMOPROPANE, 1-
CHLOROBUTANE, 1-ETHYLNAPHTHALENE, 1-METHYLNAPHTHALENE, 1-
NITROBUTANE, 2-BROMOPROPANE, 2-CHLOROBUTANE, 2-METHYLHEXANE, 
2-METHYLTHIOPHENE, 3-METHYLHEPTANE, 3-METHYLHEXANE, 
ACENAPHTHENE, ANTHRACENE, BENZENE, BROMOBENZENE, 
CHLOROBENZENE, CHLOROFORM, CYCLOHEXANE, CYCLOHEXENE, 
CYCLOPENTANE, CYCLOPENTENE, ETHANE, ETHYLBENZENE, ETHYLENE, 
FLUOROBENZENE, HEXACHLOROBENZENE, HEXACHLOROETHANE, INDANE, 
IODOBENZENE, ISOBUTANE, ISOBUTYLBENZENE, M-XYLENE, METHANE, 
METHYLCYCLOHEXANE, METHYLCYCLOPENTANE, N-BUTANE, N-PENTANE, 
NAPHTHALENE, O-XYLENE, OCTAFLUOROCYCLOBUTANE, P-XYLENE, 
PHENANTHRENE, PROPANE, SEC-BUTYLBENZENE, STYRENE, TERT-
BUTYLBENZENE, THIOPHENE, TOLUENE 

Cluster 
5 

1-BROMOBUTANE, 1-BROMOHEPTANE, 1-BROMOPROPANE, 1-
CHLOROBUTANE, 1-ETHYLNAPHTHALENE, 1-METHYLNAPHTHALENE, 2-
BROMOPROPANE, 2-CHLOROBUTANE, 2-METHYLHEXANE, 2-
METHYLTHIOPHENE, 3-METHYLHEPTANE, 3-METHYLHEXANE, 
ACENAPHTHENE, ANTHRACENE, BENZENE, BROMOBENZENE, 
CHLOROBENZENE, CYCLOHEXANE, CYCLOPENTANE, CYCLOPENTENE, 
DICHLOROMETHANE, ETHANE, ETHYLBENZENE, ETHYLENE, 
FLUOROBENZENE, FORMALDEHYDE, HEXACHLOROBENZENE, 
HEXACHLOROETHANE, INDANE, IODOBENZENE, ISOBUTANE, 
ISOBUTYLBENZENE, M-XYLENE, METHANE, METHYLCYCLOHEXANE, 
METHYLCYCLOPENTANE, N-BUTANE, N-PENTANE, NAPHTHALENE, O-
XYLENE, OCTAFLUOROCYCLOBUTANE, P-XYLENE, PHENANTHRENE, 
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PROPANE, PYRENE, SEC-BUTYLBENZENE, STYRENE, TERT-BUTYLBENZENE, 
THIOPHENE, TOLUENE 

Cluster 
6 

1-NITROBUTANE, 1-NITROPROPANE, 2-BUTOXYETHANOL, 2-
ETHOXYETHANOL, 2-METHOXYETHANOL, 2-METHYLPYRIDINE, 2-
NITROPROPANE, 2-PHENYLETHANOL, 3-METHYLPYRIDINE, 4-
METHYLPYRIDINE, ACENAPHTHENE, ACETALDEHYDE, ACETONE, 
ACETONITRILE, ANILINE, ANTHRACENE, BENZALDEHYDE, BENZONITRILE, 
BROMOBENZENE, CHLOROFORM, CYCLOHEXANOL, CYCLOHEXANONE, 
CYCLOPENTANONE, DIBROMOMETHANE, DICHLOROMETHANE, 
DIIODOMETHANE, ETHANOL, FORMALDEHYDE, IODOBENZENE, M-CRESOL, 
METHANOL, MORPHOLINE, NITROBENZENE, NITROMETHANE, O-CRESOL, P-
CRESOL, PHENANTHRENE, PHENOL, PIPERIDINE, PYRIDINE, PYRROLE, 
PYRROLIDINE, QUINOLINE, QUINONE, TETRAHYDROFURAN, THIOPHENE 

Cluster 
7 

2-BUTOXYETHANOL, 2-ETHOXYETHANOL, 2-METHOXYETHANOL, 2-
PHENYLETHANOL, ACETAMIDE, AMMONIA, ANILINE, ETHANOL, GLYCEROL, 
HYDRAZINE, M-CRESOL, METHANOL, N-METHYLACETAMIDE, P-CRESOL, 
PHENOL, PIPERAZINE, PYRENE, PYRROLE, QUINONE, SULFOLANE 

Cluster 
8 

2-METHYLHEXANE, 3-METHYLHEPTANE, 3-METHYLHEXANE, ACETAMIDE, 
CYCLOHEXANE, CYCLOHEXENE, CYCLOPENTANE, ETHANE, 
HEXACHLOROBENZENE, ISOBUTANE, METHANE, METHYLCYCLOHEXANE, 
METHYLCYCLOPENTANE, N-BUTANE, N-PENTANE, 
OCTAFLUOROCYCLOBUTANE, PROPANE 

Cluster 
9 

1-BROMOBUTANE, 1-BROMOHEPTANE, 1-BROMOPROPANE, 1-
CHLOROBUTANE, 1-ETHYLNAPHTHALENE, 1-METHYLNAPHTHALENE, 1-
NITROBUTANE, 2-BROMOPROPANE, 2-CHLOROBUTANE, 2-METHYLHEXANE, 
2-METHYLTHIOPHENE, 3-METHYLHEXANE, ACENAPHTHENE, BENZENE, 
BROMOBENZENE, CHLOROBENZENE, CYCLOHEXANE, CYCLOHEXENE, 
CYCLOPENTANE, CYCLOPENTENE, DICHLOROMETHANE, ETHYLBENZENE, 
ETHYLENE, FLUOROBENZENE, HEXACHLOROBENZENE, 
HEXACHLOROETHANE, INDANE, IODOBENZENE, ISOBUTANE, 
ISOBUTYLBENZENE, M-XYLENE, METHANE, METHYLCYCLOHEXANE, 
METHYLCYCLOPENTANE, N-BUTANE, N-PENTANE, NAPHTHALENE, O-
XYLENE, OCTAFLUOROCYCLOBUTANE, P-XYLENE, PROPANE, SEC-
BUTYLBENZENE, STYRENE, TERT-BUTYLBENZENE, THIOPHENE, TOLUENE 

Cluster 
10 

1-BROMOHEPTANE, 1-ETHYLNAPHTHALENE, 2-METHYLHEXANE, 3-
METHYLHEPTANE, 3-METHYLHEXANE, ACENAPHTHENE, ANTHRACENE, 
CYCLOHEXANE, CYCLOPENTANE, ETHANE, GLYCEROL, 
HEXACHLOROBENZENE, HEXACHLOROETHANE, ISOBUTANE, 
ISOBUTYLBENZENE, METHYLCYCLOHEXANE, METHYLCYCLOPENTANE, N-
BUTANE, N-PENTANE, OCTAFLUOROCYCLOBUTANE, PHENANTHRENE, 
PYRENE, SEC-BUTYLBENZENE, TERT-BUTYLBENZENE 

Cluster 
11 

1-BROMOBUTANE, 1-BROMOHEPTANE, 1-BROMOPROPANE, 1-
CHLOROBUTANE, 1-ETHYLNAPHTHALENE, 1-METHYLNAPHTHALENE, 1-
NITROBUTANE, 2-BROMOPROPANE, 2-CHLOROBUTANE, 2-METHYLHEXANE, 
2-METHYLTHIOPHENE, 2-NITROPROPANE, 3-METHYLHEXANE, 
ACENAPHTHENE, BENZENE, BROMOBENZENE, CHLOROBENZENE, 
CHLOROFORM, CYCLOHEXANE, CYCLOHEXENE, CYCLOPENTANE, 
CYCLOPENTENE, DICHLOROMETHANE, ETHANE, ETHYLBENZENE, 
ETHYLENE, FLUOROBENZENE, HEXACHLOROBENZENE, 
HEXACHLOROETHANE, INDANE, IODOBENZENE, ISOBUTANE, 
ISOBUTYLBENZENE, M-XYLENE, METHANE, METHYLCYCLOHEXANE, 
METHYLCYCLOPENTANE, N-BUTANE, N-PENTANE, NAPHTHALENE, O-
XYLENE, OCTAFLUOROCYCLOBUTANE, P-XYLENE, PROPANE, SEC-
BUTYLBENZENE, STYRENE, TERT-BUTYLBENZENE, THIOPHENE, TOLUENE 
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Table 2. The clustering results from birch. 
 Cluster 1 ACETAMIDE, ACETONITRILE, AMMONIA, GLYCEROL, HYDRAZINE, 

METHANOL, N-METHYLACETAMIDE, NITROMETHANE, PHENOL, 
PIPERAZINE, PYRENE, PYRROLE, SULFOLANE 

Cluster 2 1-NITROBUTANE, 1-NITROPROPANE, 2-BUTOXYETHANOL, 2-
METHYLPYRIDINE, 2-METHYLTHIOPHENE, 2-NITROPROPANE, 2-
PHENYLETHANOL, 3-METHYLPYRIDINE, 4-METHYLPYRIDINE, 
ACENAPHTHENE, ACETALDEHYDE, ACETONE, ACETONITRILE, ANILINE, 
ANTHRACENE, BENZALDEHYDE, BENZONITRILE, BROMOBENZENE, 
CHLOROBENZENE, CHLOROFORM, CYCLOHEXANOL, CYCLOHEXANONE, 
CYCLOPENTANONE, DIBROMOMETHANE, DICHLOROMETHANE, 
DIIODOMETHANE, ETHANOL, FORMALDEHYDE, IODOBENZENE, M-CRESOL, 
METHANOL, MORPHOLINE, NAPHTHALENE, NITROBENZENE, 
NITROMETHANE, O-CRESOL, P-CRESOL, PHENANTHRENE, PIPERIDINE, 
PYRIDINE, PYRROLE, PYRROLIDINE, QUINOLINE, QUINONE, 
TETRAHYDROFURAN, THIOPHENE 

Cluster 3 1-NITROBUTANE, 1-NITROPROPANE, 2-BUTOXYETHANOL, 2-
ETHOXYETHANOL, 2-METHOXYETHANOL, 2-METHYLPYRIDINE, 2-
NITROPROPANE, 2-PHENYLETHANOL, 3-METHYLPYRIDINE, 4-
METHYLPYRIDINE, ACENAPHTHENE, ACETALDEHYDE, ACETONE, 
ACETONITRILE, ANILINE, ANTHRACENE, BENZALDEHYDE, BENZONITRILE, 
CHLOROFORM, CYCLOHEXANOL, CYCLOHEXANONE, CYCLOPENTANONE, 
DIBROMOMETHANE, DIIODOMETHANE, ETHANOL, FORMALDEHYDE, M-
CRESOL, METHANOL, MORPHOLINE, NITROBENZENE, NITROMETHANE, O-
CRESOL, P-CRESOL, PHENANTHRENE, PHENOL, PIPERAZINE, PIPERIDINE, 
PYRENE, PYRIDINE, PYRROLE, PYRROLIDINE, QUINOLINE, QUINONE, 
SULFOLANE, TETRAHYDROFURAN 

Cluster 4 1-BROMOBUTANE, 1-BROMOHEPTANE, 1-BROMOPROPANE, 1-
CHLOROBUTANE, 1-ETHYLNAPHTHALENE, 1-METHYLNAPHTHALENE, 1-
NITROBUTANE, 2-BROMOPROPANE, 2-CHLOROBUTANE, 2-METHYLHEXANE, 
2-METHYLTHIOPHENE, 3-METHYLHEPTANE, 3-METHYLHEXANE, 
ACENAPHTHENE, ANTHRACENE, BENZENE, BROMOBENZENE, 
CHLOROBENZENE, CHLOROFORM, CYCLOHEXANE, CYCLOHEXENE, 
CYCLOPENTANE, CYCLOPENTENE, ETHANE, ETHYLBENZENE, ETHYLENE, 
FLUOROBENZENE, HEXACHLOROBENZENE, HEXACHLOROETHANE, 
INDANE, IODOBENZENE, ISOBUTANE, ISOBUTYLBENZENE, M-XYLENE, 
METHANE, METHYLCYCLOHEXANE, METHYLCYCLOPENTANE, N-BUTANE, 
N-PENTANE, NAPHTHALENE, O-XYLENE, OCTAFLUOROCYCLOBUTANE, P-
XYLENE, PHENANTHRENE, PROPANE, SEC-BUTYLBENZENE, STYRENE, 
TERT-BUTYLBENZENE, THIOPHENE, TOLUENE 

Cluster 5 1-BROMOBUTANE, 1-BROMOHEPTANE, 1-BROMOPROPANE, 1-
CHLOROBUTANE, 1-ETHYLNAPHTHALENE, 1-METHYLNAPHTHALENE, 2-
BROMOPROPANE, 2-CHLOROBUTANE, 2-METHYLHEXANE, 2-
METHYLTHIOPHENE, 3-METHYLHEPTANE, 3-METHYLHEXANE, 
ACENAPHTHENE, ANTHRACENE, BENZENE, BROMOBENZENE, 
CHLOROBENZENE, CYCLOHEXANE, CYCLOPENTANE, CYCLOPENTENE, 
DICHLOROMETHANE, ETHANE, ETHYLBENZENE, ETHYLENE, 
FLUOROBENZENE, FORMALDEHYDE, HEXACHLOROBENZENE, 
HEXACHLOROETHANE, INDANE, IODOBENZENE, ISOBUTANE, 
ISOBUTYLBENZENE, M-XYLENE, METHANE, METHYLCYCLOHEXANE, 
METHYLCYCLOPENTANE, N-BUTANE, N-PENTANE, NAPHTHALENE, O-
XYLENE, OCTAFLUOROCYCLOBUTANE, P-XYLENE, PHENANTHRENE, 
PROPANE, PYRENE, SEC-BUTYLBENZENE, STYRENE, TERT-BUTYLBENZENE, 
THIOPHENE, TOLUENE 
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Cluster 6 1-NITROBUTANE, 1-NITROPROPANE, 2-BUTOXYETHANOL, 2-
ETHOXYETHANOL, 2-METHOXYETHANOL, 2-METHYLPYRIDINE, 2-
NITROPROPANE, 2-PHENYLETHANOL, 3-METHYLPYRIDINE, 4-
METHYLPYRIDINE, ACENAPHTHENE, ACETALDEHYDE, ACETONE, 
ACETONITRILE, ANILINE, ANTHRACENE, BENZALDEHYDE, BENZONITRILE, 
BROMOBENZENE, CHLOROFORM, CYCLOHEXANOL, CYCLOHEXANONE, 
CYCLOPENTANONE, DIBROMOMETHANE, DICHLOROMETHANE, 
DIIODOMETHANE, ETHANOL, FORMALDEHYDE, IODOBENZENE, M-CRESOL, 
METHANOL, MORPHOLINE, NITROBENZENE, NITROMETHANE, O-CRESOL, P-
CRESOL, PHENANTHRENE, PHENOL, PIPERIDINE, PYRIDINE, PYRROLE, 
PYRROLIDINE, QUINOLINE, QUINONE, TETRAHYDROFURAN, THIOPHENE 

Cluster 7 2-BUTOXYETHANOL, 2-ETHOXYETHANOL, 2-METHOXYETHANOL, 2-
PHENYLETHANOL, ACETAMIDE, AMMONIA, ANILINE, ETHANOL, 
GLYCEROL, HYDRAZINE, M-CRESOL, METHANOL, N-METHYLACETAMIDE, 
P-CRESOL, PHENOL, PIPERAZINE, PYRENE, PYRROLE, QUINONE, 
SULFOLANE 

Cluster 8 2-METHYLHEXANE, 3-METHYLHEPTANE, 3-METHYLHEXANE, ACETAMIDE, 
CYCLOHEXANE, CYCLOHEXENE, CYCLOPENTANE, ETHANE, 
HEXACHLOROBENZENE, ISOBUTANE, METHANE, METHYLCYCLOHEXANE, 
METHYLCYCLOPENTANE, N-BUTANE, N-PENTANE, 
OCTAFLUOROCYCLOBUTANE, PROPANE 

Cluster 9 1-BROMOBUTANE, 1-BROMOHEPTANE, 1-BROMOPROPANE, 1-
CHLOROBUTANE, 1-ETHYLNAPHTHALENE, 1-METHYLNAPHTHALENE, 1-
NITROBUTANE, 2-BROMOPROPANE, 2-CHLOROBUTANE, 2-METHYLHEXANE, 
2-METHYLTHIOPHENE, 3-METHYLHEXANE, ACENAPHTHENE, BENZENE, 
BROMOBENZENE, CHLOROBENZENE, CYCLOHEXANE, CYCLOHEXENE, 
CYCLOPENTANE, CYCLOPENTENE, DICHLOROMETHANE, ETHYLBENZENE, 
ETHYLENE, FLUOROBENZENE, HEXACHLOROBENZENE, 
HEXACHLOROETHANE, INDANE, IODOBENZENE, ISOBUTANE, 
ISOBUTYLBENZENE, M-XYLENE, METHANE, METHYLCYCLOHEXANE, 
METHYLCYCLOPENTANE, N-BUTANE, N-PENTANE, NAPHTHALENE, O-
XYLENE, OCTAFLUOROCYCLOBUTANE, P-XYLENE, PROPANE, SEC-
BUTYLBENZENE, STYRENE, TERT-BUTYLBENZENE, THIOPHENE, TOLUENE 

Cluster 
10 

1-BROMOHEPTANE, 1-ETHYLNAPHTHALENE, 2-METHYLHEXANE, 3-
METHYLHEPTANE, 3-METHYLHEXANE, ACENAPHTHENE, ANTHRACENE, 
CYCLOHEXANE, CYCLOPENTANE, ETHANE, GLYCEROL, 
HEXACHLOROBENZENE, HEXACHLOROETHANE, ISOBUTANE, 
ISOBUTYLBENZENE, METHYLCYCLOHEXANE, METHYLCYCLOPENTANE, N-
BUTANE, N-PENTANE, OCTAFLUOROCYCLOBUTANE, PHENANTHRENE, 
PYRENE, SEC-BUTYLBENZENE, TERT-BUTYLBENZENE 

Cluster 
11 

1-BROMOBUTANE, 1-BROMOHEPTANE, 1-BROMOPROPANE, 1-
CHLOROBUTANE, 1-ETHYLNAPHTHALENE, 1-METHYLNAPHTHALENE, 1-
NITROBUTANE, 2-BROMOPROPANE, 2-CHLOROBUTANE, 2-METHYLHEXANE, 
2-METHYLTHIOPHENE, 2-NITROPROPANE, 3-METHYLHEXANE, 
ACENAPHTHENE, BENZENE, BROMOBENZENE, CHLOROBENZENE, 
CHLOROFORM, CYCLOHEXANE, CYCLOHEXENE, CYCLOPENTANE, 
CYCLOPENTENE, DICHLOROMETHANE, ETHANE, ETHYLBENZENE, 
ETHYLENE, FLUOROBENZENE, HEXACHLOROBENZENE, 
HEXACHLOROETHANE, INDANE, IODOBENZENE, ISOBUTANE, 
ISOBUTYLBENZENE, M-XYLENE, METHANE, METHYLCYCLOHEXANE, 
METHYLCYCLOPENTANE, N-BUTANE, N-PENTANE, NAPHTHALENE, O-
XYLENE, OCTAFLUOROCYCLOBUTANE, P-XYLENE, PROPANE, SEC-
BUTYLBENZENE, STYRENE, TERT-BUTYLBENZENE, THIOPHENE, TOLUENE 
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As could be seen, the number of clusters 
has been iterated up to 50 clusters to obtain the 
elbow plot. Consequently, the silhouette scores 
have been evaluated and plotted in the range that 
the elbow shows a curve. Accordingly, 11 clusters 
have been selected to be the optimal number of 
clusters for the evaluated dataset with K-means 
and Birch clustering. Briefly, the optimal number 
of the clusters should be considered as a 
breakpoint in the elbow while it is a maximum in 
the silhouette plot. The results of these methods 
have been evaluated and collected in Tables 1 and 
2. There is a little difference between the two 
methods that could be seen in cluster 1 of the two 
methods. Also, the other clusters are identical with 
little difference in some cases. It means the 
optimum number of clusters is working very well 
for the utilized methods.  

Generally, the first recommended 
materials for the evaluated clusters are from the 
same family for example in cluster 3 by K-means 
1-NITROBUTANE and 1-NITROPROPANE are 
suggested as alternatives that are identical with 

cluster 3 of the Birch method. It means these 
methods give the best alternatives first, and the 
close results are given next. The initial and final 
materials in each cluster should be the best 
alternatives for the previous and next material. 
The studied materials are very well-known 
organic materials. At this point, the supporting 
information data could be used to compare the 
activity coefficient data of the recommended 
materials. It would be easier to compare the 
material recommended materials instead of the 
whole dataset.  

Consider the Birch methods cluster 11 
final materials, (TERT-BUTYLBENZENE, 
THIOPHENE, TOLUENE) where thiophene 
would be a good alternative for toluene and tert-
butylbenzene. These materials are all aromatic 
solvents with similar properties, and their activity 
coefficient plots have been given in benzene in 
Figure 3 to compare the results. As could be seen 
the activity coefficient of the Benzene is identical 
for these materials. 
 

 

 

 
Fig. 3. The activity coefficient of the binary mixtures of final components (toluene, thiophene, and tert-

butylbenzene) of cluster 11 with benzene at 298.15 K from COSMO-SAC calculation. 
 
 
The centroid methods are efficient in sorting 

various alternatives from the trained dataset. 
However, the recommended materials are a different 
variety of components. The density-based methods 

for the clustering are working in a different way 
rather than the centroid-based clustering. The 
dbscan algorithm is one of the well-known density-
based clustering methods. There are two main 
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parameters for optimum results of the dbscan 
namely epsilon, the distance parameters between the 
data points in the dataset, and a minimum number of 
samples or nearest neighbor points to consider a 
region as a dense region [17]. This method works 
based on the density of the accumulated data in the 
dataset determines the number of clusters based on 
the radius of the accumulated data in a mean dataset 
plot and limits the data in the range of the 
predetermined radius. 

    Determination of the epsilon and the minimum 
number of samples could be carried out using the 
k-nearest neighbors’ module from the scikit learn 
library. An iteration on the number of neighbors 
up to 20 neighbor points has been carried out to 
achieve the optimum epsilon and the minimum 
number of samples based on the mean distance for 
k-nearest neighbors. The results are given in 
Figure 4 for different numbers of the neighbors 
and the mean value of the points. 

 
Fig. 4. The mean distance values versus k-nearest neighbors plot for the merged FreeSolv and COSMO-

SAC dataset for 96 common organic materials between the two datasets. 
 

The optimum Euclidean distance has been 
evaluated at about 0.08 for this dataset for dbscan 
clustering with 7 nearest neighbors. The method is 
quite simple and similar to the elbow method with 
some differences. The optimum number of 
neighbors considered as the point at the mean 
distance value changes dramatically and a 
breaking point in the plot would be observed 
which could be seen in Figure 4. However, the 
epsilon value would be calculated for this point 
with a mean Euclidean distance that is different 
from the information illustrated in Figure 4. In this 
respect the, string type data were removed from 
the dataset and the Euclidean distance was 
calculated for the dataset reported final value was 
obtained. 
The obtained parameters were used for the dbscan 
clustering and the obtained clusters and out layers 
have been collected in Tables 3 and 4 for the 
clusters and out layers, respectively. As could be 
seen 5 clusters and 12 out layers were obtained for 
the trained dataset. The results are quite better than 
the centroid methods since the clusters contain 
materials with similar chemical families for 

example cluster 5 including CHLOROFORM, 
DIBROMOMETHANE, 
DICHLOROMETHANE, and 
DIIODOMETHANE are halomethane families 
that the structure and chemical formula of these 
materials are given in Figure 5. It is a proven fact 
the COSMO-SAC results are affected by the 
chemical family [4]. Also, the out layers mean 
these materials have no proper alternatives in the 
trained dataset that should be considered unique 
materials. 
The results of the clustering based on the 
COSMO-SAC data could be extended to any 
warehouse and chemistry or materials science lab. 
The results of the presented work could be used in 
an organic chemistry lab or chemical engineering 
lab limited to the materials included in the 
supporting information. Also, it is possible to 
follow the instructions presented in this work to 
implement the workflow to larger datasets for 
example the petrochemical industries for different 
purposes such as the alternation of a toxic solvent 
with a proper and greener one. 
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Table 3. The clusters of the dbscan clustering. 
Cluster 1 3-METHYLHEPTANE, ACETAMIDE, CYCLOHEXENE, HEXACHLOROBENZENE, 

HEXACHLOROETHANE, METHANE, OCTAFLUOROCYCLOBUTANE 
Cluster 2 1-BROMOBUTANE, 1-BROMOHEPTANE, 1-BROMOPROPANE, 1-

CHLOROBUTANE, 1-ETHYLNAPHTHALENE, 1-METHYLNAPHTHALENE, 1-
NITROBUTANE, 1-NITROPROPANE, 2-BROMOPROPANE, 2-CHLOROBUTANE, 
2-METHYLHEXANE, 2-METHYLPYRIDINE, 2-METHYLTHIOPHENE, 2-
NITROPROPANE, 3-METHYLHEPTANE, 3-METHYLHEXANE, 3-
METHYLPYRIDINE, 4-METHYLPYRIDINE, ACENAPHTHENE, 
ACETALDEHYDE, ACETONE, ACETONITRILE, ANILINE, ANTHRACENE, 
BENZALDEHYDE, BENZENE, BENZONITRILE, BROMOBENZENE, 
CHLOROBENZENE, CYCLOHEXANE, CYCLOHEXANOL, CYCLOHEXANONE, 
CYCLOHEXENE, CYCLOPENTANE, CYCLOPENTANONE, CYCLOPENTENE, 
ETHANE, ETHANOL, ETHYLBENZENE, ETHYLENE, FLUOROBENZENE, 
FORMALDEHYDE, INDANE, IODOBENZENE, ISOBUTANE, 
ISOBUTYLBENZENE, M-CRESOL, M-XYLENE, METHANE, METHANOL, 
METHYLCYCLOHEXANE, METHYLCYCLOPENTANE, MORPHOLINE, N-
BUTANE, N-PENTANE, NAPHTHALENE, NITROBENZENE, NITROMETHANE, O-
CRESOL, O-XYLENE, P-CRESOL, P-XYLENE, PHENANTHRENE, PHENOL, 
PIPERIDINE, PROPANE, PYRENE, PYRIDINE, PYRROLIDINE, QUINOLINE, 
QUINONE, SEC-BUTYLBENZENE, STYRENE, TERT-BUTYLBENZENE, 
TETRAHYDROFURAN, THIOPHENE, TOLUENE  

Cluster 3 2-BUTOXYETHANOL, 2-ETHOXYETHANOL, 2-METHOXYETHANOL 
Cluster 4 2-METHYLHEXANE, 3-METHYLHEPTANE, 3-METHYLHEXANE, 

CYCLOHEXANE, CYCLOPENTANE, ETHANE, ISOBUTANE, 
METHYLCYCLOHEXANE, METHYLCYCLOPENTANE, N-BUTANE, N-
PENTANE, PROPANE 

Cluster 5 CHLOROFORM, DIBROMOMETHANE, DICHLOROMETHANE, 
DIIODOMETHANE 

 
Table 4. The out layers of the dbscan clustering. 

Out layer 1 PIPERAZINE 
Out layer 2 PYRROLE 
Out layer 3 ACETAMIDE 
Out layer 4 2-PHENYLETHANOL 
Out layer 5 HYDRAZINE 
Out layer 6 HEXACHLOROETHANE 
Out layer 7 HEXACHLOROBENZENE 
Out layer 8 AMMONIA 
Out layer 9 GLYCEROL 
Out layer 
10 

SULFOLANE 

Out layer 
11 

OCTAFLUOROCYCLOBUTANE 

Out layer 
12 

METHYLACETAMIDE 
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Fig. 5. The components of cluster 5 include halomethanes from dbscan clustering.

 
 
2.2. Materials and methods 
Workstation 
The procedures have been implemented with 
python in the Jupyter environment. Different two 
PCs with different configurations have been used to 
evaluate the results, and the results were identical in 
the two configurations which are important for the 
repeatability of the process. Accordingly, the 
FreeSolv dataset and VT2005 σ-profiles dataset has 
been used as initial data [9,10]. It should be noted 
that there were 96 exact matches according to the 
IUPAC names of the materials between the two 
datasets, and it was a limitation of this work. 

The activity coefficients of 96 organic 
materials with different solvents such as methanol, 
ethanol, benzene, toluene, and water in full range 
composition (mole fractions of solute = 0, 0.1, …, 
0.9, 1) at 298.15 K have been calculated by the 
open-source benchmark of the COSMO-SAC 
implemented by Bell et al. A detailed information 
is available in the corresponding paper. Also, it is 
accessible from the GitHub repository [18]. A 
considerable dataset of activity coefficients about 
9500 data points are evaluated in total. 

Finally, the datasets including the FreeSolv 
dataset that contains MD results for various organic 
materials’ free energy of hydration, the VT2005 
dataset that contains σ-profiles of different 
materials calculated using dmol3 and used as 
COSMO-SAC inputs, and a dataset containing 
different organic materials activity coefficient in 
the full-range concentration of the mixtures at 
298.15 K. These datasets have been combined using 
the Pandas library of Python based on the IUPAC 
names of the materials. 
Machine learning clustering  

Different clustering methods were used to create the 
clusters and alternate the organic materials 
according to the activity coefficient of the 96 
materials in different solvents. The Gower module 
has been used to convert the string data to a 
numerical value. The elbow method and silhouette 
methods were used for the determination of the 
parameters in the centroid-based clustering 
methods [19,20]. Also, the k-nearest neighbor’s 
method was used for the determination of the 
parameters of the density-based clustering method 
[3,21-23]. Three clustering methods including K-
means and birch as centroid-based methods and 
dbscan as a density-based method from the sklearn 
library of python were used to create the alternative 
recommender [24-29].  
 
3. Conclusion 
 
The COSMO-SAC model has been used to evaluate 
the full range activity coefficient for 96 organic 
materials that were common between the FreeSolv 
and VT2500 datasets by their IUPAC name. The 
information of the two datasets was combined and 
pre-processed for machine learning clustering. The 
combined dataset has been used to implement an 
alternative material recommender by different 
machine learning clustering methods. In this 
respect, centroid-based methods including K-
means and Birthc methods and density-based 
method dbsacn were used. According to the results, 
the centroid-based methods recommend a variety of 
materials for a component by sorting it from nearest 
to the possible far component in the cluster radius. 
However, the density-based clustering recommends 
the alternative materials based on the k-nearest 
neighbors with a determined radius. The results for 
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density-based clustering were more promising for 
the presented dataset obtained from COSMO-SAC 
calculations. 
 
Supporting Information 
A full-range of concentration dataset of the activity 
coefficient of the studied materials in different 
solvents (water, ethanol, methanol, benzene, and 
toluene) (Docx). 
 
Data and Software Availability 

1. The datasets analyzed during the current 
study are available in the 
[MobleyLab/FreeSolv] repository, 
[https://github.com/MobleyLab/FreeSolv] 

2. The free benchmark implementation of 
COSMO-SAC model 
usnistgov/COSMOSAC repository, 
[https://github.com/usnistgov/COSMOSA
C]. 
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